
Exercise 1

The graph of f is given.

(a) Find each limit, or explain why it does not exist.

(i)
$$\lim_{x \to 2^+} f(x)$$
 (ii) $\lim_{x \to -3^+} f(x)$ (iii) $\lim_{x \to -3} f(x)$

(iv)
$$\lim_{x \to 4} f(x)$$
 (v) $\lim_{x \to 0} f(x)$ (vi) $\lim_{x \to 2^-} f(x)$

(vii)
$$\lim_{x \to \infty} f(x)$$
 (viii) $\lim_{x \to -\infty} f(x)$

- (b) State the equations of the horizontal asymptotes.
- (c) State the equations of the vertical asymptotes.
- (d) At what numbers is f discontinuous? Explain.

Solution

Calculate the limits using the given graph.

(i)
$$\lim_{x \to 2^+} f(x) = 3$$

(ii)
$$\lim_{x \to -3^+} f(x) = 0$$

(iii)
$$\lim_{x \to -3^+} f(x) = doe$$

- (iii) $\lim_{x \to -3} f(x) = \text{does not exist because left- and right-hand limits are unequal}$
- (iv) $\lim_{x \to 4} f(x) = 2$
- (v) $\lim_{x \to 0} f(x) = \infty$
- (vi) $\lim_{x \to 2^-} f(x) = -\infty$

(vii)
$$\lim_{x \to \infty} f(x) = 4$$

(viii) $\lim_{x \to -\infty} f(x) = -1$

www.stemjock.com

The horizontal asymptotes are

y = 4 and y = -1,

the vertical asymptotes are

x = 0 and x = 2,

and f is discontinuous at

x = -3 and x = 0 and x = 2 and x = 4.